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The development of a protein-specifically adapted objective function for docking is described.
Structural and energetic information about known protein-ligand complexes is exploited to
tailor knowledge-based potentials using a “reverse”, protein-based CoMFA-type ()AFMoC)
approach. That way, effects due to protein flexibility and information about multiple solvation
schemes can be implicitly incorporated. Compared to the application of AFMoC for binding
affinity predictions, a Shannon entropy based column filtering of the descriptor matrix and
the capping of adapted repulsive potentials within the binding site have turned out to be crucial
for the success of this method. The new developed approach (AFMoCobj) was validated on a
data set of 66 HIV-1 protease inhibitors, for which experimental structural information was
available. Convincingly, for ligands with up to 20 rotatable bonds, in more than 75% of all
cases a binding mode below 2 Å rmsd has been identified on the first scoring rank when
AFMoCobj-based potentials were used as the objective function in AutoDock. With respect to
nonadapted DrugScore or AutoDock fields, the binding mode prediction accuracy was
significantly improved by 14%. Noteworthy, very similar results were obtained for training
and test set compounds, demonstrating the strength and robustness of this method. Implications
of our findings for binding affinity predictions and its usage in virtual screening are further
discussed.

Introduction

Driven by the insight that biological space (represent-
ing all drug-relevant targets) is considerably smaller
than chemical space (representing all synthesizable
compounds), it is advisable to let biological structures
guide chemistry in the process of drug discovery, not
the other way around.1 Accordingly, structure-based
drug design techniques are increasingly used for iden-
tifying hits and optimizing lead compounds.2 Of central
importance to the structure-based in silico approaches
is the ability to generate and identify relevant binding
modes and to accurately predict binding affinities of
small molecules to their macromolecular targets by
docking techniques.3-5 Therefore, obtaining “correct”
binding modes (i.e., those that are close to the native
structure) is a necessary, albeit not sufficient, pre-
requisite for a reliable estimation of binding affinities.6,7

Underlying docking approaches are the principles of
molecular recognition and chemical complementarity.
Usually, docking solutions are generated by solely
considering information about the determinants of
binding provided by both binding partners. This allows
for exhaustive sampling of the configurational space of
the ligand within the binding site, providing a highly
diverse set of docking solutions. In addition, because of
the lack of any bias, this approach advantageously offers
the opportunity of “scaffold hopping”8 in drug discovery;

that is, it allows finding new classes of leads. However,
these “pure” docking techniques do not take into account
any a priori knowledge about ligands already known to
bind to the receptor, neither with respect to the chemical
properties of a ligand nor with respect to the location
and/or conformation of a ligand in the binding site.

Interestingly, another important principle known in
the field of drug design is molecular similarity, where
it is exploited that structurally similar molecules should
provide similar biological responses. Initially applied to
drug design problems where the structure of the target
is unknown, the principle has formed the basis of
classical QSAR, 3D QSAR,9 and superimposition tech-
niques,10 as well as molecular similarity/diversity ap-
proaches used to design (virtual) libraries.11

Only very recently, both the principles of molecular
similarity and molecular recognition have been com-
bined in structure-based drug design applications for
the benefit of increased speed and quality of the
obtained solutions.12 As an initial step toward such a
strategy, tools for molecular comparison were applied
consecutively or iteratively with docking in virtual
screening.13 In addition, ligand information was con-
sidered to improve the model building of proteins by
homology.14,15

In the field of docking, similarity-driven approaches
have been introduced that take advantage of additional
structural information about ligands known to bind to
the target, as well as protein-based information, such
as receptor-based pharmacophores or “hot-spot” analy-
ses of binding sites.16,17 Following a classification scheme
proposed by Fradera and Mestres,12 indirect approaches
incorporate chemical information only implicitly by
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having an effect on scoring but not on orienting the
ligand during sampling, whereby direct approaches
actively guide the sampling within the binding site.

Accordingly, Fradera et al.18 have described modifica-
tions to the DOCK 4.0 program such that similarity
scores derived from small-molecule superpositioning are
used to weight the DOCK energy score. Extracting
information from experimentally resolved protein-
ligand complexes, a (indirect) “similarity-penalized” and
a (direct) “similarity-guided” variant have been intro-
duced. In another approach, FlexX-Pharm19 has been
developed as an extended version of the flexible docking
tool FlexX, in which interactions or spatial constraints
are derived from receptor-based pharmacophore fea-
tures. These constraints are then used as filters to keep
or reject docking solutions, either as a postdocking filter
or by look-ahead checks during construction of the
ligand in the binding site. Pharmacophore points are
also used in a recent study by Daeyaert et al.20 to
initially place pregenerated conformers of small mol-
ecules into receptor binding sites. Finally, Wu and
Vieth21 have augmented the CHARMM force field with
an additional similarity force derived from the positions
of ligands from crystallographic data such that the
simulated annealing molecular dynamics based sam-
pling of the ligand is focused on the relevant binding
site regions.

One shortcoming of the above methods is that they
are restricted to exploit only structural a priori informa-
tion. Since energetic information is neglected, these
methods do not provide an implicit means of weighting
the influence of the similarity information with respect
to the location in the binding pocket. However, this
limitation has been overcome at least qualitatively by
defining “essential” and “optional” constraints in the
FlexX-Pharm approach.19 Yet a more fine-grained tun-
ing would be desirable, which can be achieved by
combining structural and energetic information about
known ligands. In a way, this paradigm has been
pursued in so-called tailor-made scoring functions specif-
ically adapted to predict binding affinities with respect
to one particular protein.22-25 Here, structure-based
properties (e.g., interaction energy components derived
from experimentally determined protein-ligand com-
plexes) are correlated to experimental binding affinities.

In the present study, we introduce a novel approach
that exploits structural and energetic information about
known protein-ligand complexes in order to tailor an
objective function for docking with respect to one
particular protein. Particularly, we aim at improving
binding mode predictions, motivated by findings from
recent studies that (I) accurate predictions of binding
affinities critically depend on finding correct binding
conformations,6,7 (II) docking programs need to produce
reliable binding modes to obtain good enrichments in
virtual screening,26,27 and (III) docking techniques are
increasingly used to support lead optimization efforts,28

in which docking of analogues can be facilitated by the
application of similarity-driven algorithms.

Our strategy rests upon the DrugScore29 and
AFMoC25 approaches developed by us. DrugScore is a
knowledge-based scoring function that has been derived
from crystallographically determined protein-ligand
complexes. This function was shown to reliably recog-

nize correct binding modes and accurately predict
binding affinities.30-32 The observation that DrugScore
also predicts which type of ligand atom will most
favorably bind at a given site in a protein binding pocket
(resulting in a “hot-spot” analysis)17 prompted us to
apply DrugScore as an objective function in docking
optimizations.33 Thus, the Lamarckian genetic algo-
rithm of AutoDock has been successfully used to search
for favorable ligand binding modes, guided by DrugScore
potential fields as representations of the binding pocket.
In a parallel development, knowledge-based potentials
to score binding modes using protein information are
combined with techniques from comparative molecular
field analyses. As a result, knowledge-based potentials
are specifically adapted to a particular protein in a
CoMFA-type approach.25 This protein-based, or with
respect to the origin of the fields, “reverse” CoMFA
()AFMoC) allows us to gradually move from general
knowledge-based to protein-specifically adapted poten-
tials, depending on the amount of ligand data available
for training or the desired degree of generality/specificity
for predictions.

Combining both routes as described above naturally
leads to integrating the principles of molecular rec-
ognition and molecular similarity. Hence, we show here
that using potential fields, which have been protein-
specifically adapted by a modified AFMoC approach
(AFMoCobj), as an objective function represents a prom-
ising tool for improving docking accuracy with respect
to unmodified DrugScore fields or fields generated by
the AutoDock function. By the mapping of differences
in the energetic information, our approach thereby
provides an implicit weighting of the structural infor-
mation with respect to the location in the binding site.

The methodology, subsequently referred to as
AFMoCobj-based docking, has been tested on HIV-1
protease inhibitors. In total, 48 crystallographically
determined structures of bound HIV-1 protease in-
hibitors were used to derive AFMoC models and to
calculate the adapted potential fields that are then used
in docking. To put the results into proper perspec-
tive, ligands were also subjected to docking with the
regression-based energy function of AutoDock and to
docking with DrugScore potentials fields. Encourag-
ingly, AFMoCobj-based docking improved binding mode
predictions by 14% compared to the nonadapted ap-
proaches.

Methods

General Strategy. Here, we outline the general
strategy to calculate protein-specifically adapted poten-
tial fields pursued in this study (Figure 1). Details of
the single steps are given in the paragraphs below.
First, atom-type specific potential fields are generated
by mapping distance-dependent pair potentials between
protein atoms and ligand probe atoms onto a cubic grid
located in the binding pocket,17 applying the DrugScore
scoring function29 (Figure 1, top left). In this step, only
structural information of the protein environment is
taken into account. Following the AFMoC approach,25

interaction fields are then calculated for each ligand in
the training set by “multiplying” atom-type specific
properties of the ligand placed in the binding pocket
with neighboring grid values (Figure 1, top right). As a

Improving Binding Mode Predictions Journal of Medicinal Chemistry, 2005, Vol. 48, No. 17 5467



result, this step considers structural information of the
ligand molecules. In the next step, interaction field
values are correlated to experimentally determined
binding affinities (“energetic information”) of the train-
ing set ligands by means of partial least squares (PLS)
analysis, resulting in individual weighting factors for
each field position. Applying these weighting factors to
the original DrugScore potential fields finally produces
protein-specifically adapted potential fields (Figure 1,
bottom) that are used as the objective function in
docking (AFMoCobj).

Data Sets and Alignments. Ligand structures from
66 crystallographically determined HIV-1 protease in-
hibitor complexes were extracted from the Protein Data
Bank (PDB). Only complexes with wild-type protein or
protein mutants that do not influence the binding mode
or the binding affinity were considered.34-37 The data
set comprises 48 compounds for training (Table 1 in
Supporting Information) and 18 compounds for testing
(Table 2 in Supporting Information). Training com-
pounds with experimentally determined pKi values were
used in generating the AFMoC model. The pKi values
spread over a range of 5.7 log units and showed a
balanced distribution, albeit the range between pKi )
6 and 7 was underrepresented. Compounds for which
either no (e.g., 1htf) pKi value or multiple (e.g., 1aaq)
pKi values were found have been put into the test set.
In both data sets, peptidomimetic inhibitors outweigh
ligands of other substance classes.

Since the protein structure is considered to be rigid
during AFMoC analysis and docking, ligand structures
were taken from a structural superimposition of all
binding sites using the database ReLiBase+.38 They
were then minimized within a single representative
active site to obtain a consistent alignment of all
inhibitor molecules using the MAB force field as imple-
mented in Moloc.39 As a representative active site, the
protein structure of the PDB entry 1ajv (resolution: 2
Å) was chosen,40 which shows minimal conformational

changes of binding site residues when compared to the
unbound structure (rmsd of binding site residues of ∼0.3
Å) or when compared to other bound structures of our
data set (average rmsd of binding site residues of ∼0.7
Å). The protonation states of the catalytic aspartic acid
residues (Asp25 and Asp25′) in the active site were
assigned according to a study of Kulkarni and Kulkarni,
who found that one of the two catalytic aspartic acid
residues is monoprotonated with a proton placed on the
outer oxygen of the side chain.41 Similar results have
been obtained by other experimental or theoretical
studies.42-44 Accordingly, in our case the outer oxygen
of D25 was protonated. For calculating the DrugScore
or AFMoC fields, no further modification of the enzyme
structure was necessary. For calculating AutoDock
maps, polar hydrogens were added and Kollman united-
atom partial charges45 were assigned.

In general, the inhibitors in our data set represent
two structurally distinct classes, peptidomimetic in-
hibitors and nonpeptidomimetic inhibitors (comprising
cyclic ureas, cyclic sulfonamides, hydroxypyrone deri-
vates, and others). While most of the inhibitors of the
latter class do not show any specific interactions to
structural water molecules, the peptidomimetic inhibi-
tors bind to the so-called flap water. The flap water
forms a bridge between the inhibitor and the amide
hydrogens of I50 and I50′ in the flap regions of the
protease in a tetrahedral arrangement and is considered
to be important for inhibitor binding.46 Hence, peptido-
mimetic inhibitors were minimized in the presence of
the flap water. During this step, the water molecule was
allowed to move.

To take into account that inhibitors may bind in two
different binding modes due to rotational symmetry,47

a second data set was created that contained the
inhibitors in a “turned” orientation. This data set was
obtained by superimposing the representative protein
active site residues of chain A onto the corresponding
residues of chain B and applying the resulting trans-
formation to the ligands as well.

Since one does not know a priori which of the two
symmetry-related orientations of a ligand (i.e., the
“turned” or the “nonturned” orientation) should be
considered for AFMoC analysis, we embarked to find
the superimposition that resulted in the best AFMoC
model. Hereby, model quality is measured by means of
the cross-validated r2 (q2). In that sense, our approach
is similar in spirit to the work of Schaal et al.48 However,
because of the larger number of components, a system-
atic search over all possible combinations of ligand
orientations is computationally intractable. Hence, we
applied a greedy optimization procedure. Starting from
an arbitrarily selected set of “turned” and “nonturned”
orientations of the training set molecules, the orienta-
tion of a randomly chosen molecule was flipped. The new
superimposed set was kept as starting point for the next
cycle only if it resulted in a better model. After optimi-
zation of all inhibitors, a new round with the hitherto
obtained superimposition was initiated. This step was
repeated until no further improvement in the model
quality was found.

A literature survey indicated that the binding assays
for compounds contained in our data set have been
performed at pH values between 4.7 and 6.5. Thus,

Figure 1. Calculation of protein-specifically adapted potential
fields. See text for details.
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standard protonation states were assumed, i.e., car-
boxylate and phosphate groups were considered to
be deprotonated, while aliphatic amino groups were
considered to be protonated. Possible changes in the
protonation states upon binding to the protein were
neglected. Finally, for calculating AutoDock maps,
Gasteiger-Marsili charges49 were assigned to each
inhibitor.

AFMoC Analysis. Interaction fields for the super-
imposed inhibitors were calculated as described else-
where25 using the protein structure of 1ajv as reference.
The size of the grid box was selected such that all
inhibitor molecules were sufficiently embedded with a
margin of at least 4 Å. Fields were initially calculated
for seven inhibitor atom types as stated below. To study
the influence of the grid spacing on the quality of the
AFMoC models, values of 0.375 and 1.0 Å were tested.
However, if not stated differently, results are reported
for 0.375 Å grid spacing, which is also recommended
for setting up the maps in AutoDock. We further
ensured that AFMoC grids had the same dimensions
and positions as DrugScore grids and AutoDock maps
in order to obtain comparable results. To be able to
calculate interactions even in the vicinity of protein
atoms where the knowledge-based pair potentials are
not defined due to missing experimental data, an
artificial repulsion term based on a Gaussian function
was added to each potential (see ref 25 for details). In
agreement with an earlier study,33 a multiplication
factor of 10 has been selected for the height of the
repulsion function at the origin of an atom-atom
contact. This value has been adjusted to be of the same
order of magnitude as the largest absolute values of the
pair potentials. Variations of the steepness of the
repulsion function did not significantly alter the results
(data not shown).

Interaction field values were then correlated with
experimentally determined binding affinities using
partial least squares regression (PLS)50,51 similar to
CoMFA.52 Statistical analyses were performed using an
in-house implementation of the (SAM)PLS algorithms.53

The columns of the descriptor matrix have been cen-
tered on input. Since interaction field values are ob-
tained by applying DrugScore pair potentials, which
were already mutually weighted upon derivation of
the potentials, neither the columns nor the interaction
fields in total were scaled. To check the statistical
significance of the obtained PLS models, cross-validation
runs were performed by means of the “leave-one-out”
(LOO) procedure using the enhanced SAMPLS method,
which results in the cross-validated r2 (q2). Following
recommendations of Wold,50 Kubinyi et al.,54 and Bush
et al.,53 the columns of the descriptor matrix were
recentered for every new cross-validation run. The
optimal number of components has been determined as
the one that resulted in a final increase of the q2 value
by 5% (i.e., adding another component increased the q2

by less than 5%). The same number of components was
subsequently used to derive the final AFMoC model,
applying a “minimum σ” standard deviation threshold
value of 1.

Statistical results are summarized in Tables 1 and
2. The q2, sPRESS, r2, S, and contribution values were
computed as defined in ref 52. To detect possible chance

correlations, the biological data were randomly scrambled
and model calculations were repeated. Only negative q2

values were obtained in this case (Table 3), supporting
the assumption that meaningful correlations with the
biological data are given in the nonscrambled case.

Upon calculation of the interaction fields, protein-to-
inhibitor interactions are distributed over neighboring
grid points using a distance-dependent Gaussian func-
tion. The half-width of this function determines the
“local smearing” of the interactions. Smaller σ values
result in a more locally restricted mapping, whereas
larger σ values tend to average adjacent interactions.
To study the influence of σ, values of 0.4, 0.55, 0.7, ...,
1.15 Å were used to calculate interaction fields. How-
ever, if not stated differently, a σ value of 0.7 Å has been
applied, in agreement with a recent study.25

Since the interaction fields obtained by mapping
protein-inhibitor interactions onto neighboring grid

Table 1. Statistical Results for AFMoC Analysesa

spacingb

1.0 0.375

q2 c,d 0.66 (0.42) 0.65 (0.40)
spress

e,f 1.09 1.11
r2 c,g 0.97 (0.94) 0.97 (0.94)
S e,h 0.34 0.35
F c,i 319.8 (181.9) 297.6 (167.8)
componentsj 4 4
fraction
C.3 0.356 0.356
C.ar 0.555 0.554
O.3 0.041 0.039
O.2 0.017 0.019
O.co2 0.001 0.001
N.am 0.024 0.025
S.3 0.006 0.007

a Models are based on PLS calculations using a σ value of 0.7 Å
and grid spacings of 1.0 and 0.375 Å. b In Å. c Values are given
considering only pKi,PLS or considering pKi,total (values in paren-
theses). d q2 ) 1 - PRESS/SSD as obtained by “leave-one-out”
cross-validation. PRESS equals the sum of squared differences
between predicted and experimentally determined binding affini-
ties. SSD is the sum of the squared differences between experi-
mentally determined binding affinities and the mean of the
training set binding affinities. e In logarithmic units. f sPRESS )
[PRESS/(n - h -1)]1/2 as obtained by “leave-one-out” cross-
validation. n equals the number of data points. h is the number
of components. g Correlation coefficient. h S ) [RSS/(n - h -1)]1/2.
RSS equals the sum of squared differences between fitted and
experimentally determined binding affinities. i Fischer’s F value.
j Number of components.

Table 2. Statistical Results for 10 Runs of “Leave-Five-Out”
Cross-Validationa

no. of run q2 b Spress
c componentsd

1 0.65 (0.40) 1.1 3
2 0.67 (0.43) 1.08 4
3 0.66 (0.41) 1.08 3
4 0.74 (0.55) 0.96 4
5 0.68 (0.45) 1.05 3
6 0.69 (0.46) 1.04 3
7 0.63 (0.35) 1.15 4
8 0.65 (0.39) 1.12 4
9 0.74 (0.55) 0.94 3
10 0.72 (0.51) 0.99 3
LOOe 0.65 (0.40) 1.11 4

a Models are based on PLS calculations using a σ value of 0.7 Å
and a grid spacing of 0.375 Å. b Values are given considering only
pKi,PLS or considering pKi,total (values in parentheses). c In loga-
rithmic units. d Number of components. e For comparison, results
of “leave-one-out” cross-validation are shown.
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points are ligand atom-type specific, various combina-
tions can be used to build up the descriptor matrix as
input for the PLS analysis. Starting with a combination
of seven fields, which to our knowledge represent best
the interaction differences of the considered ligands, we
subsequently reduced the number of fields to obtain a
simplified model following the parsimony principle
(Table 4). The combination of five fields shown in bold
was finally used for all calculations throughout this
study.

One of the reasons for the successful application of
knowledge-based potentials in docking and recognizing
near-native binding modes is their smooth funnel-shape
compared to traditional force-fields.31,32 However, adapted
AFMoC fields appear more localized upon visual inspec-
tion and, hence, are expected to be rather rugged. To
obtain an accurate docking function that still tolerates
imperfect ligand placement in a rigid binding pocket,
adapted fields and unmodified DrugScore potentials
were linearly mixed. In this study, the mixing param-
eter θ was set to 0.0, 0.25, 0.5, 0.75, and 1.0, with θ )
0.0 reflecting “pure” DrugScore and θ ) 1.0 reflecting
“pure” AFMoC potentials.

Since PLS analysis relates differences in interaction
fields to differences in binding affinity, regression
coefficients in the QSAR equation become small for
regions within the binding pocket that do not show a
significant variation in the interaction field values (e.g.,
because all ligands have similar substituents). There-
fore, these regions will not contribute significantly to
the docking function, albeit key interactions may still
occur as demonstrated by the similar substitution of all
inhibitors. In these cases, using “pure” DrugScore
potentials instead of the AFMoC fields may be favorable.
To remove those columns from PLS analysis that have
little variance, we initially increased the “minimum σ”
standard deviation threshold. However, since our fields

have not been scaled and the “minimum σ” measures
the information content of a column in absolute terms,
applying an equal σ value of the order of 100 to all field
types resulted in nonsignificant AFMoC models. Hence,
we decided to filter columns according to their Shannon
entropy, which provides a relative measure of the
information content for each column. Therefore, mini-
mal and maximal field values were determined for each
field type. This range was then divided into 15 equally
sized bins, and by assignment of column values to these
bins, a histogram of each column was obtained. From
the normalized frequency distribution of values pi in bin
i, the Shannon entropy S 55 of a column was calculated
according to

Columns with Shannon entropies below a given
threshold were excluded from PLS analysis. Thresholds
ranging from 0.25, 0.275, ..., 0.325, 0.35 times the
maximal possible entropy Smax ) ld N (with N equaling
the number of values in a column) have been tested. To
account for the fact that excluded columns still repre-
sent interactions of ligand atoms with the protein, the
experimentally determined binding affinity (pKi,total) was
reduced by the contributions of these columns prior to
PLS analysis (resulting in pKi,PLS). This procedure is
similar to the one applied to contributions by ligand
atom types that are not included in the finally chosen
set of field types.25 In the prediction step, discarded
columns were replaced by DrugScore potential field
values.

Correlating binding affinities with interaction fields
results in individual weighting factors for each field
position. By application of these weighting factors to the
original DrugScore potential fields, protein-specifically
adapted potential fields are obtained. Some of the
regions of these adapted fields favor ligand binding more
than the original DrugScore fields; hence, these regions
become “attractors” of ligand atoms of a given type in
docking. Not unexpectedly, the opposite trend is also
observed, resulting in adapted field regions that disfavor
ligand binding compared to DrugScore. In some cases,
previously favorable regions within the binding site may
even become repulsive. While these regions are impor-
tant for correctly predicting binding affinities based on
the adapted fields, initial docking studies revealed that
penalizing the placement of ligand substructures that
way hampers the prediction of accurate binding modes.
Hence, we decided to postprocess the AFMoC-based
potential fields prior to docking by replacing all columns
that (I) have favorable values in the original fields and
(II) become repulsive in the adapted fields, with original
DrugScore values or with zero. This way it is ensured
that previously repulsive field regions (e.g., in the
vicinity of the protein) are not changed.

The resulting objective function that is based on the
above modifications to the original AFMoC approach
will be referred to as AFMoCobj.

Docking. All docking runs were performed applying
the Lamarckian genetic algorithm of AutoDock 3.0.56

AutoDock maps were generated using the AutoGrid
utility from the AutoDock package. The grid spacing

Table 3. q2 Values for AFMoC Models Obtained with
Randomly Scrambled Affinity Dataa

no. of components q2 b

1 -0.23 (-1.13)
2 -0.37 (-1.37)
3 -0.31 (-1.26)
4 -0.35 (-1.33)
5 -0.23 (-1.13)
6 -0.22 (-1.11)
7 -0.21 (-1.10)
8 -0.18 (-1.00)
9 -0.19 (-1.10)

10 -0.19 (-1.10)
q Models are based on PLS calculations using a σ value of 0.7 Å

and a grid spacing of 0.375 Å. b Values are given considering only
pKi,PLS or considering pKi,total (values in parentheses).

Table 4. q2 Values Obtained by AFMoC Using Different
Combinations of Interaction Fieldsa

combination of fieldsb q2 c

C.3/C.ar/O.3/O.2/O.co2/N.am/S.3 0.65 (0.4)
C.3/C.ar/O.3/O.2/N.am/S.3 0.65 (0.37)
C.3/C.ar/O.3/O.2/O.co2/N.am 0.67 (0.44)
C.3/C.ar/O.3/O.2/N.am 0.66 (0.42)
C.3/C.ar/O.3/N.am 0.68 (0.30)

a Models are based on PLS calculations using a σ value of 0.7 Å
and a grid spacing of 0.375 Å. b The notation of the combination
of interaction fields follows the atom type convention of SYBYL.73

Further details are given in ref 29. c Values are given considering
only pKi,PLS or considering pKi,total (values in parentheses).

S ) -∑
i)1

15

pi ld pi (1)
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was set to default (i.e., 0.375 Å). DrugScore, AFMoC,
and AFMoCobj grids were calculated as follows: First,
unweighted potential fields were calculated using a grid
spacing of 0.375 Å. In the case of AFMoC, potential field
values were multiplied by the coefficients of the QSAR
equation. Then, as stated above, DrugScore, AFMoC,
and AFMoCobj field values were mixed according to the
mixing parameter θ. The “raw” grids were finally
transformed into an AutoDock map format. In ac-
cordance with earlier studies,33 a scaling factor of 2.5
× 10-5 for DrugScore values was used in all cases.

The standard docking protocol for flexible inhibitor
docking consisted of 100 independent runs per inhibitor,
using an initial population of 50 randomly placed
individuals, a maximum number of 5 × 105 energy
evaluations, a mutation rate of 0.02, a crossover rate of
0.8, and an elitism value of 1. Docked conformations
differing by less than 1 Å rmsd from each other were
clustered together and represented by the result with
the best docking energy. As docking energy, the sum of
inter- and intramolecular scores was taken. Of all 66
inhibitors, those with more than 20 rotatable bonds did
not result in converged docking runs, as judged from
the cluster size distribution. Furthermore, no improve-
ment was observed by increasing the population size
and the number of energy evaluations. Thus, only 52
ligands (training set, 34; test set, 18) with less than 20
rotatable bonds were finally used for docking. Binding
modes are considered “well-docked” if they have an rmsd
value of <2.0 Å with respect to the minimized reference
structure. Both the “turned” and “nonturned” reference
poses were used for evaluating the rmsd value, and the
lower of the two calculated values was finally chosen.
The percentage of complexes for which a “well-docked”
binding mode is found on the first scoring rank is termed
“prediction accuracy” in the following.

Results and Discussion

Data Sets and Alignment Procedure. To validate
the AFMoCobj-based docking, a data set of 66 HIV-1
protease inhibitors was selected. The data set includes
a diverse collection of inhibitors, varying in size, flex-
ibility, and chemical structure. Molecular structures and
properties of these compounds are listed in Tables 1 and
2 in Supporting Information. For all selected inhibitors,
experimentally determined binding modes were avail-
able from the Protein Data Bank (PDB). While these
structures provided ligand reference orientations for the
validation of our approach, we note that using experi-
mentally determined binding modes is not mandatory
in general because significant AFMoC models have also
been derived from data sets consisting of modeled ligand
poses.25 To obtain a structural alignment of all ligands,
the inhibitors were minimized in the rigid binding
pocket of 1ajv after superimposition of the respective
protein structures (see Methods). On average, the
minimized ligand orientations deviate by 1.28 Å from
their corresponding crystal structure except for nine
cases (PDB entries: 1dif, 1hpo, 1htf, 1hvi, 1hvj, 1hvk,
1hvl, 1hwx, 3aid) where minimized ligand poses deviate
by more than 2 Å. Visual inspection of these rather large
and flexible compounds revealed that deviations are
predominantly located in the terminal parts of the
molecules that lie at the outer regions of the binding

pocket. Thus, we decided to retain these compounds in
the data set. The pKi values of the 48 training com-
pounds used for deriving the AFMoC model spread over
a satisfactorily large range of more than 5 logarithmic
units.57

For AFMoC analyses, the alignment procedure needs
to consider the structure of the target protein. The
binding pocket of HIV-1 protease shows a 2-fold rota-
tional symmetry, and hence, each inhibitor can bind to
the enzyme in two different orientations 47 (denoted
“turned” and “nonturned”; see Methods). Thus, to obtain
a unique ligand superimposition, one needs to choose
one out of the two possible orientations for each ligand.48

Since in our case a systematic search would have
resulted in a computationally intractable number of 248

≈ 1014.4 combinations, a greedy optimization procedure
was applied to choose the orientation of each ligand that
gives the best AFMoC model with the resulting super-
imposition. Altogether, five optimization rounds per run
were performed, after which the quality of the model
has usually converged (Figure 2). The results of about
70 independent runs were analyzed. Clustering of
similar superimpositions yielded four highly populated
clusters (number of cluster members: 17, 11, 12, and
9), and all corresponding AFMoC models showed a high
statistical significance (i.e., with q2 > 0.5; data not
shown). The best superimposition among the four
clusters was finally selected as the one that resulted in
the best AFMoC model (Figure 3).

Optimizing QSAR models by optimizing ligand align-
ments has been repeatedly criticized.58,59 In fact, when
applying our greedy optimization procedure on the
training data with randomly scrambled pKi values, we
were also able to obtain “good” AFMoC models, which
is in line with the recent finding that the q2 value may
be an inadequate characteristic to assess the predictive
ability of models.60 Nevertheless, these models did not
show any predictive power when used as an objective
function in docking (data not shown). As judged from
the docking results of the AFMoC model obtained with
the correct pKi (see below), we are thus confident that
this model is significant. We also emphasize that no new
ligand conformations or orientations were generated for
the final superimposition, but rather only one out of two
given alternatives per ligand was chosen.

Figure 2. Convergence of the greedy optimization procedure
to obtain a ligand superimposition. Depicted is the q2 value
versus the number of optimization steps. For the sake of
clarity, only 10 randomly chosen optimization runs out of 70
are shown.
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Significance and Robustness of AFMoC Analy-
ses. Table 1 summarizes the statistical results of
AFMoC analyses with respect to grid spacings of 0.375
and 1.0 Å, respectively, using the optimized ligand
superimposition. Models with q2 > 0.5 are generally
accepted as significant, and models with q2 > 0.3 are
considered “good”.61 For both grid spacings, q2 > 0.5 has
been obtained for the part of pKi being adapted during
PLS analysis while considering the total binding affinity
still results in q2 > 0.4. Hence, the dependence on the
grid spacing is negligible, and a value of 0.375 Å has
been used for further calculations. In this case, for 10
runs of “leave-five-out” cross-validation, q2 values greater
than 0.5 were obtained (Table 2). The plot of predicted
versus actual binding affinities for the PLS analysis
(Figure 4) does not reveal any significant over- or
underprediction across the whole activity range. Fur-
thermore, no trend can be observed for residuals across
different classes of compounds. Thus, both observations
suggest that the AFMoC model represents the whole

data set of molecules. Further indication for the signifi-
cance of the obtained model is provided by the randomly
scrambled data that do not allow one to obtain reason-
able models (Table 3). We note that the discussion on
the significance of the model could be considerably
strengthened by testing the predictive power of the
model with respect to binding affinities with an external
test set that has not been used during model derivation.
However, the test set used in our study consists of all
those compounds for which either no pKi or multiple pKi
values were found (see Methods). Although this choice
renders impossible the use for testing affinity predic-
tions, it complies with the main purpose of our study to
devise a method to improve binding mode predictions
and, at the same time, to include as much structural
information as is available from the PDB. Finally, as
discussed in more detail below, obtaining very similar
results for the training and test sets in the case of
binding mode predictions, in our opinion, provides a
strong hint to the significance of the model.

Contributions by interaction fields to explain binding
affinity differences are listed in Table 1. The fields of
atom types C.3 and C.ar contributed considerably more
than fields calculated for polar atoms, with O.co2 and
S.3 fields showing the least contribution. This finding
may be explained by the frequency of occurrence for
these atom types in the ligand data set, which led us to
test the influence of different interaction field combina-
tions on the q2 value (Table 4). The final model was
derived using only five fields (C.3, C.ar, O.3, O.2, N.am)
with a q2 value comparable to the seven-field model,
both for the part of binding affinity considered in PLS
analysis (pKi,PLS) as well as the total binding affinity
(pKi,total).

Figure 5 shows the dependence of the q2 values with
respect to variations in the σ value that governs the
degree of “smearing” protein-ligand interactions across
neighboring grid points. Selecting σ < 0.55 Å results in
models with reduced significance, whereas the depend-
ence of q2 on σ values between 0.7 and 1.15 Å is small.
Hence, in agreement with a recent study,25 a σ value of
0.7 Å was chosen for subsequent calculations. Consider-
ing that this σ value decreases a particular interaction
across a distance of 1 Å to 21% of its original value, it
becomes obvious that particularly local interactions are
taken into account.

Figure 3. Alignment of the HIV-1 protease inhibitors in the
binding pocket of 1ajv. Residues of the “flap” regions have been
removed for the sake of clarity.

Figure 4. Experimentally determined binding affinities
versus fitted predictions for the training set of 48 HIV-1
protease inhibitors. In addition to the line of ideal correlation,
dotted lines are given that indicate deviations from the actual
pKi value by (1 logarithmic unit.

Figure 5. Dependence of q2 on the magnitude of σ values that
govern the degree of “smearing” protein-ligand interactions
across neighboring grid points. For σ > 0.55 Å, significant
models are obtained.
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Modifying AFMoC Fields for Binding Mode
Predictions. a. Column Filtering by Shannon En-
tropy. Initial docking runs using the protein-specifically
adapted potential fields derived from the above AFMoC
model yielded less accurate results (proportion of poses
found on the first scoring rank with rmsd less than 2.0
Å: 60.4%) than using the unmodified DrugScore poten-
tial fields (67.3%) (Table 5). Visual inspection of these
potential fields showed particularly that regions in the
binding site that were occupied by similar substructures
of many ligands (which may be indicative of key
interactions occurring with the protein) contributed
little to these potential fields (Figure 6a). This can be
explained by the fact that PLS analyses relate differ-
ences in interaction fields to differences in binding
affinities. Thus, for regions in the binding pocket that
do not show a significant variance in the interaction
field values across all ligands, regression coefficients in
the QSAR equation and, hence, the adapted potential
fields used for docking become small.

Initially, we sought to overcome this effect by increas-
ing the “minimum σ” threshold value (in CoMFA-type
applications usually applied to remove columns with
little variance in the field values), which can then be
replaced with original DrugScore values. However,
applying an equal σ value to all field types resulted in
nonsignificant PLS models (data not shown) presumably
because the “minimum σ” is an absolute measure of the
information content within the columns, and our fields
have not been scaled. Instead, we chose to filter columns
according to their Shannon entropy (eq 1), which
provides a relative measure of the information content
for each column. For columns that were thus excluded,
original DrugScore values were used in the prediction
step, assuming that this information is more valuable
in docking than close-to-zero field values obtained
otherwise (Figure 6b).

Figure 7 shows the dependence of binding mode
prediction accuracy on the Shannon entropy threshold
values. Although the prediction accuracy with respect
to binding modes deviating <2.0 Å from the reference
structure varies by approximately 10% over the range
of threshold values tested, we note that both curves for
training and test set compounds show very similar
characteristics. Thus, the optimal Shannon entropy
threshold value determined on the training set should
also be applicable in the prediction step, which is
important for “real-life” scenarios. When a prediction
accuracy with respect to binding modes deviating <1.0
Å from the reference structure is used as a more
stringent criterion, a maximum is found at a Shannon

entropy threshold of 0.325 (data not shown). Thus, this
value was chosen in the comparison of docking results
(see below).

b. Capping Repulsive Regions in AFMoC Fields.
While some regions of adapted potential fields favor
ligand binding more than the original DrugScore po-
tential fields, in some cases, previously favorable bind-
ing site regions may even become repulsive after
adaptation. This is exemplified for adapted fields of
aromatic carbon in Figure 8. Although this information
is important in the prediction of binding affinities for
already superimposed ligands, penalizing ligand sub-
structure placement that way turned out to prevent
generation of “well-docked” binding modes in prelimi-
nary docking runs. Hence, AFMoC-based potential fields
were postprocessed by replacing repulsive regions,
which were favorable in the original DrugScore fields,
with original DrugScore values. Alternatively, setting
these field values to zero resulted in very similar
binding mode prediction accuracies.

Table 5. Docking Results for 52 Ligands Using Objective
Functions by AFMoC, AFMoCobj, DrugScore, and AutoDock

% of complexes with poses exhibiting
rmsd of the reference structure

method <1.0 Åa <1.5 Åa <2.0 Åa

AFMoC b 37.5 (43.8) 52.1 (66.7) 60.4 (79.1)
AFMoCobj c 40.4 (69.2) 55.7 (94.2) 76.9 (100.0)
DrugScore 38.5 (65.6) 55.7 (94.2) 67.3 (100.0)
AutoDock 34.6 (53.9) 48.1 (75.0) 67.3 (92.3)
a The numbers represent the percentage of cases for which a

pose is found on the first scoring rank. Values in parentheses are
the percentage of cases for which a pose is found irrespective of
the scoring rank. b Unmodified AFMoC approach as described in
ref 25. c Modified AFMoC approach described in this study.

Figure 6. Isocontour surfaces (contour level: -0.5) of adapted
hydroxyl oxygen (atom type O.3) potential fields calculated
with (a) “minimum σ” (blue) and (b) Shannon entropy (green)
threshold during AFMoC analysis, respectively. Isocontour
surfaces (contour level: -0.5) of original DrugScore potential
fields are shown in mesh representation in both cases. Note
that no potential field contributions in the vicinity of one of
the hydroxyl groups of the ligand of PDB structure 1ajx (cyan)
can be observed at the given contour level in case a; thus, key
interactions (indicated by the similar substitution of ligands
in this binding pocket region) are neglected. Filtering these
regions prior to AFMoC analysis and using original DrugScore
values instead alleviates this problem.
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c. Linear Mixing of AFMoC and DrugScore
Fields. Visual inspection of pure AFMoCobj fields re-
vealed deep minima in some regions of the binding
pocket. In contrast, DrugScore fields are more wide-
spread in the binding site region. Therefore, linear
mixing of AFMoCobj fields with DrugScore fields allows
varying the amount of specificity and generality con-
tained in the field values. In terms of an objective
function for docking, adding contributions by DrugScore
fields leads to a smoother potential surface compared
to one that originates from AFMoCobj fields alone. That
way, the objective function better tolerates imperfectly
placed ligand poses, which has been shown to be
advantageous for docking.31,32

To test the influence of mixing fields on the outcome
of the docking runs, mixing parameters θ of 0.0, 0.25,
0.5, 0.75, and 1.0 have been used, with θ ) 0.0
representing pure DrugScore and θ ) 1.0 representing
pure AFMoCobj fields. Considering the prediction ac-
curacy with respect to binding modes deviating <2.0 Å
from the reference structure, Figure 9 reveals that using
both pure DrugScore and pure AFMoCobj fields results
in inferior prediction accuracy compared to the mixed
fields (e.g., in the case of the training set, 65-70%
versus a maximum of 80% prediction accuracy). En-
couragingly, for θ values ranging from 0.25 to 0.75, the
prediction accuracy changes by less than 5%, which
holds for both the training and test sets. Hence, it can
be expected that a mixing parameter, which has been

optimized for the given protein-ligand system on the
training set alone, will also give satisfying results when
applied in the prediction step. Using as a more stringent
criterion a prediction accuracy with respect to binding
modes deviating <1.0 Å from the reference structure
results in a maximum at θ ) 0.25 (data not shown).
Hence, this value was chosen in the comparison of
docking results (see below).

Comparison of Docking Results. In this sec-
tion, we compare results obtained with the modified
AFMoC fields (AFMoCobj, using a Shannon entropy
threshold value of 0.325, a mixing factor θ of 0.25, and
filtering of repulsive columns) to dockings using original
DrugScore fields or the objective function implemented
in AutoDock.62

Irrespective of their scoring rank, well-docked ligand
poses (i.e., those with rmsd less than 2.0 Å) are gener-
ated in more than 92% of the cases by all three
approaches (Table 5), which indicates an appropriate
choice of docking parameters as judged by the overall
convergence of the dockings. However, analyzing the
size distribution of clusters of similar binding modes
(Figure 10) reveals that the AutoDock function produces
smaller clusters containing the best-ranked binding
mode compared to the objective functions based on
DrugScore or AFMoCobj fields. As such, clusters consist-
ing of >70 similar binding modes are found in 10 cases
for DrugScore and only 4 cases for AutoDock. Hence,
the energy landscape provided by DrugScore appears
to be more funnel-shaped compared to that of AutoDock,
which favors convergence of independent docking runs
to the same final result. This has also been described
before.31,32 Encouragingly, mixing adapted potential
fields with DrugScore potentials retains this smooth-
ness, as indicated by 13 clusters consisting of >70
similar binding modes in the case of the AFMoCobj-based
objective function.

When pure AutoDock or DrugScore fields were used
as objective functions, well-docked ligand poses were
recognized on the first scoring rank in 67.3% of all cases
(Table 5, Figure 11). When AFMoCobj fields were applied
instead, well-docked configurations were recognized in
76.9% of all cases on the first rank, which amounts to
an improvement of 14% with respect to the other two
approaches. Convincingly, very similar results are

Figure 7. Dependence of binding mode prediction accuracy
on the Shannon entropy threshold value. Prediction accuracy
is measured in terms of the proportion of ligand molecules for
which a binding mode below 2 Å rmsd is found on the first
scoring rank. Results are shown for both the training set (9)
and test set (O) compounds.

Figure 8. Isocontour surfaces of adapted aromatic carbon
potential fields (contour level: +0.9) are shown in the binding
pocket of HIV-1 protease together with the ligand of PDB
structure 1b6m. Note the repulsive field contributions at the
location of the phenyl moiety of the ligand.

Figure 9. Dependence of prediction accuracy on the mixing
parameter θ (θ ) 0.0, pure DrugScore fields; θ ) 1.0, pure
AFMoCobj fields). Prediction accuracy is measured in terms of
the proportion of ligand molecules for which a binding mode
below 2 Å rmsd is found on the first scoring rank. Results are
shown for both the training set (9) and test set (O) compounds.
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obtained if only compounds from the training set (76.5%)
or the test set (77.8%) are considered. This indicates
that the information contained in the AFMoCobj fields
is sufficiently general to allow for good docking results,
even for compounds that have not been included in the
training set. With respect to ligand poses below 1.5 Å,
both AFMoCobj- and DrugScore-based docking show
superior prediction accuracies when compared to using
the AutoDock objective function, although the improve-
ment of AFMoCobj over DrugScore in these cases is
small.

Figures 12 and 13 exemplify the improvement of
ligand placement by using AFMoCobj-based docking
compared to DrugScore-based docking. In Figure 12, the
best-ranked ligand poses of PDB entry 1d4s are depicted
for which rmsd values of 4.5 Å (Figure 12a, DrugScore)
and 0.8 Å (Figure 12b, AFMoCobj) were found. In
addition, isocontour plots of potential fields of aliphatic
carbon (atom type C.3) are shown (blue, DrugScore-

based; red, AFMoCobj-based). These isopleths highlight
the most pronounced differences in the center region of
the figures. In particular, potential fields adapted by
AFMoCobj now extend into the S1 and S1′ subsites of
the protein. This favors the placement of the C-3R ethyl
and phenethyl moieties of the ligand at those sites and,
hence, the identification of a pose that is closer to the
reference.

In Figure 13, isocontour plots of potential fields of
hydroxyl oxygen (atom type O.3) are shown (blue,
DrugScore-based; red, AFMoCobj-based) together with
best-ranked ligand poses of PDB entry 3upj. With
respect to the fields of aliphatic carbon in Figure 12,
the hydroxyl oxygen fields show a considerably higher
spatial restriction. The fact that very similar contour
levels were applied in both cases thus indicates the more
pronounced orientational dependence of polar interac-
tions compared to nonpolar interactions. Conversely,
when the DrugScore potential fields for hydroxyl oxygen
are compared to those adapted by AFMoCobj, the latter
are more expanded in the binding pocket. Thus, the
placement of the hydroxyl group of the 4-hydroxy-
coumarin moiety of the ligand in the vicinity of Asp25
is more favored in the case of AFMoCobj-based fields.
Although differences in fields of other atom types may
also play a role, these findings provide an explanation
for the more accurate docking result (rmsd ) 1.37 Å)

Figure 10. Correlation of cluster sizes obtained by AFMoCobj-
(9) and AutoDock-based (/) docking with respect to DrugScore-
based docking for 52 ligands. In all cases, clusters were chosen
that contained the docking solution found on the first scoring
rank. While AFMoCobj and DrugScore yield very similar cluster
sizes as indicated by the proximity of the data points to the
line of ideal correlation, AutoDock-based docking yields clus-
ters of considerably smaller sizes.

Figure 11. Accumulated number of complexes as a function
of the rmsd value from the minimized reference structure
found for ligand poses on rank 1, using objective functions by
AFMoCobj (9), DrugScore (O), and AutoDock (/).

Figure 12. Improvement of ligand placement by using
AFMoCobj-based docking compared to DrugScore-based dock-
ing. Best-ranked ligand poses of PDB entry 1d4s are shown,
for which rmsd values of 4.5 Å ((a) DrugScore) and 0.8 Å ((b)
AFMoCobj) were found. In addition, isocontour plots of potential
fields for the aliphatic carbon C.3 are depicted (blue, Drug-
Score-based; red, AFMoCobj-based; contour level, -0.7).
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obtained with AFMoCobj-based fields compared to using
fields based on DrugScore (rmsd ) 2.16 Å).

Assessment of the Approach and Implications
for Drug Design. In a recent study, ligand flexibility
has been found to have a greater effect on predicting
structures correctly than size or polarity of the com-
pounds.63 With this in mind, the data set of HIV-1
protease inhibitors provides a challenging test for every
docking algorithm because of the high flexibility of the
molecules,33 even if only ligands with <20 rotatable
bonds have been used here. This holds true even more
when one takes into account that we did not just dock
ligands back into their complex protein structure but
rather used a single representative protein structure for
all ligands. The “consensus-docking” type of approach
is more closely related to real-life scenarios but usually
leads to lower prediction accuracies compared to “self-
docking” because small changes in the receptor confor-
mation can have a large impact on the docking re-
sults.32,63,64 This observation was recently confirmed in
a docking study of 21 HIV-1 protease inhibitors with
AutoDock. The authors report a prediction accuracy of
62% for cross-docking, which was about 30% lower than
in the case of self-docking.65 Similarly, docking 36 HIV-1
protease inhibitors to a representative protein structure
with CDOCKER resulted in a prediction accuracy of

35%, whereas self-docking was successful in 50% of the
cases.63 Another study using the similarity-assisted
docking approach SDOCKER showed that for 37 HIV-1
protease inhibitors docked to a single consensus struc-
ture only in 30% of the cases a good docking solution
was found.21 Finally, we note that self-docking studies
of HIV-1 protease inhibitors have also been reported for
other docking programs;66-72 however, the limited num-
ber of complexes used in each case precludes a statistical
evaluation of the results. In view of those findings,
recognizing in more than 75% of all cases a well-docked
solution below 2.0 Å on the first scoring rank using
AFMoCobj-based docking irrespective of whether train-
ing or test set compounds are considered clearly dem-
onstrates the strength and robustness of our approach.

Furthermore, we were pleased to see that the predic-
tion accuracy was particularly increased for peptido-
mimetic inhibitors, even though they were docked into
the protein structure of a complex with a nonpeptido-
mimetic ligand. This is in contrast to a recent study
where it has been found that docking peptidomimetic
inhibitors into a cyclic urea inhibitor protein structure
was significantly more difficult than the other way
around.70 One may thus anticipate that the protein-
specific tailoring of an objective function by considering
structural and energetic information about known
ligands also accounts implicitly for effects due to protein
flexibility. Likewise, no explicit water molecules were
considered during the docking. Yet, as mentioned above,
improved binding modes are particularly found for
peptidomimetic inhibitors, albeit a structural water
molecule bound to the protease flaps is known to be
important for their binding.46 Hence, adapted potentials
apparently also incorporate implicit information about
multiple solvation schemes. While advantageous in our
case, it is noted that incorporating different solvation
and conformational states in a single objective function
may occasionally lead to artifacts such that ligands can
simultaneously “experience” mutually exclusive combi-
nations of features from different states.65

In this study, we improved binding mode predictions
by docking into AFMoCobj-based potential fields, which
is motivated by the finding that for accurately predicting
binding affinities it is a prerequisite to generate and
recognize “correct” binding modes.6,7 In a recent study,
we already have demonstrated that the prediction of
binding affinities using AFMoC indeed improves sig-
nificantly if the quality of the docking solutions is
increased.25 Hence, we recommend the following guide-
lines for ranking different compounds: First, with an
AFMoCobj-based objective function as described herein,
ligand binding modes are generated by docking. As
mentioned above, fields based on the original AFMoC
approach needed to be modified to be applicable for
binding mode prediction (Table 5). Then, in a second
step, binding affinities are predicted for ligand geom-
etries found on the first scoring rank. For this, applying
unmodified AFMoC fields (r2 ) 0.38) outperforms the
use of the AFMoCobj objective function (r2 ) 0.26)
described in this study (Table 6). Mixing unmodified
DrugScore fields with the adapted ones results only in
marginal improvements in both cases. In turn, both
AFMoC approaches show a significantly higher predic-
tive power than the unmodified DrugScore function (r2

Figure 13. Improvement of ligand placement by using
AFMoCobj-based docking compared to DrugScore-based dock-
ing. Best-ranked ligand poses of PDB entry 3upj are shown,
for which rmsd values of 2.2 Å ((a) DrugScore) and 1.4 Å ((b)
AFMoCobj) were found. In addition, isocontour plots of potential
fields for the hydroxyl oxygen O.3 are depicted (blue, Drug-
Score-based; red, AFMoCobj-based; contour level, -0.8).
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) 0.13). We note, however, that the increased predictive
power in the latter case may in part be attributed to
the fact that the compounds of the training set were
used (although for all compounds docked binding ge-
ometries that deviate by at least 0.5 Å from the ones
used for training are applied in the affinity prediction,
lowering the resemblance to the training conditions).
In any case, by also taking into account previously
reported results for predicting binding affinities of
docked geometries,25 we recommend the application of
the unmodified AFMoC approach in this second step.

Recently, a correlation between the capability of a
docking tool to generate well-docked ligand geometries
and its ability to discriminate known inhibitors from
“random” compounds has also been reported.26,27 In this
respect, we expect that obtaining improved binding
modes by our approach will eventually lead to better
enrichments in virtual screening. Equally important,
using an AFMoCobj-based objective function comes at no
additional cost in the docking step because grid-based
potentials need to be evaluated just as in the non-
adapted case. In contrast, computational costs in related
approaches18,21 arise because of the additional evalua-
tion of similarity measures between ligand and template
molecules.

We have validated our approach only on a single test
system for which a considerable amount of experimental
structural and energetic information is available. Nev-
ertheless, we are convinced that for the following
reasons our approach can be extended to other targets:
(I) the HIV-1 protease target is a representative ex-
ample for proteases, which are among the major targets
to which structure-based drug design methods have
been applied; (II) the AFMoC approach has been suc-
cessfully applied in cases for which only little structural
information was available such that most of the super-
imposed ligands were modeled inside the binding
pocket;25 (III) the AFMoC approach yields significantly
improved scoring functions even for as few as 15
compounds used for training,25 allowing its application
already in an early phase of drug discovery.

Conclusion

In the present study, we have developed an approach
that exploits structural and energetic information about
known protein-ligand complexes to tailor knowledge-
based pair potentials toward a protein-specifically
adapted objective function to improve binding mode
predictions in docking. Our strategy thus combines the
principles of molecular recognition (applied in the field
of docking) and molecular similarity (applied in the field
of 3D QSAR). To achieve this, DrugScore-based poten-

tial fields are adapted by a “reverse”, protein-based
CoMFA-type ()AFMoC) approach, which allows implicit
weighting of structural ligand information with respect
to the location in the binding site. Compared to using
AFMoC for binding affinity predictions, a Shannon
entropy-based column filtering of the descriptor matrix
and capping of repulsive adapted potentials within the
binding site have turned out to be crucial for the success
of this method. The resulting modified AFMoC poten-
tials are referred to as AFMoCobj.

We validated our approach on a data set of HIV-1
protease inhibitors for which crystallographically de-
termined complex structures were available. HIV-1
protease inhibitors have been repeatedly used in dock-
ing studies and represent a challenging system because
of the size and flexibility of the ligands as well as the
occurrence of large nonpolar regions in the binding
pocket. On the basis of leave-one-out and leave-five-out
cross-validations, a significant AFMoC model was ob-
tained for a training set of 48 ligands. Noteworthy, when
the thus generated adapted potential fields were used
as the objective function in AutoDock, in more than 75%
of all cases a binding mode below 2 Å rmsd was
identified on the first scoring rank for ligands with up
to 20 rotatable bonds. With respect to using nonadapted
DrugScore or AutoDock fields, AFMoCobj-based docking
significantly improved binding mode predictions by 14%.
Convincingly, very similar prediction accuracies were
obtained with training and test set compounds, dem-
onstrating the strength and robustness of the method.
Furthermore, our approach allows for gradually moving
from generally valid to protein-specifically adapted
potentials and, hence, reflecting the amount and degree
of diversity available in the training set. Finally, the
method is as fast as docking into nonadapted potential
fields because no additional CPU cycles are required in
this step.

Considering the success of our approach, we expect
it to provide a valuable tool for similarity-driven correct
binding mode identification, which is a prerequisite for
accurate binding affinity prediction and successful
virtual screening.
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